1.31.5.1. 蚂蚁金服共享智能技术实践:如何降低数据共享的难度
解决数据孤岛,在满足隐私保护和数据安全的前提下,在不同的组织、公司与用户之间进行数据共享。 为了解决这一问题,国内外不少科技公司先后推出了解决方案,比如谷歌推出的联邦学习、蚂蚁金服提出的共享智能等
当前,业界解决隐私泄露和数据滥用的数据共享技术路线主要有两条。 一条是基于硬件可信执行环境(TEE:Trusted Execution Environment)技术的可信计算, 另一条是基于密码学的多方安全计算(MPC:Multi-party Computation)。
TEE 字面意思是可信执行环境,核心概念为以第三方硬件为载体,数据在由硬件创建的可信执行环境中进行共享。 目前在生产环境可用的 TEE 技术,比较成熟的基本只有 Intel 的 SGX 技术,基于 SGX 技术的各种应用也是目前业界的热门方向,微软、谷歌等公司在这个方向上都有所投入。
MPC(Multi-party Computation,多方安全计算)一直是学术界比较火的话题,但在工业界的存在感较弱,之前都是一些创业小公司在这个方向上有一些探索,例如 Sharemind,Privitar,直到谷歌提出了基于 MPC 的在个人终端设备的“联邦学习”(Federated Learning)的概念,使得 MPC 技术一夜之间在工业界火了起来。
人工智能目前存在的难题是鱼与熊掌不可兼得,也就是隐私性跟可用性难以兼顾。 如果想要 AI 系统发挥作用,就可能需要牺牲隐私。但是,在大量真实场景中,如果做不到同时兼顾隐私和可用性,会导致很多 AI 落地的困境。
随着对数据安全和重视和隐私保护法案的出台,曾经粗放式的数据共享受到挑战,各个数据拥有者重新回到数据孤岛的状态。 同时,互联网公司也更加难以收集和利用用户的隐私数据,数据孤岛反而成为了常态。如果希望更好的利用数据,就必须在满足隐私保护和数据安全的前提下,在不同的组织、公司与用户之间进行数据共享。
为了解决这一问题,国内外不少科技公司先后推出了解决方案,比如谷歌推出的联邦学习、蚂蚁金服提出的共享智能等。本文,InfoQ 对蚂蚁金服机器学习算法中台负责人周俊进行了采访,了解共享智能如何解决金融领域的数据共享问题。